209 research outputs found

    Model Averaging by Cross-validation for Partially Linear Functional Additive Models

    Full text link
    In this paper, we propose a model averaging approach for addressing model uncertainty in the context of partial linear functional additive models. These models are designed to describe the relation between a response and mixed-types of predictors by incorporating both the parametric effect of scalar variables and the additive effect of a functional variable. The proposed model averaging scheme assigns weights to candidate models based on the minimization of a multi-fold cross-validation criterion. Furthermore, we establish the asymptotic optimality of the resulting estimator in terms of achieving the lowest possible square prediction error loss under model misspecification. Extensive simulation studies and an application to a near infrared spectra dataset are presented to support and illustrate our method

    Estimating optimal treatment regimes in survival contexts using an instrumental variable

    Full text link
    In survival contexts, substantial literature exists on estimating optimal treatment regimes, where treatments are assigned based on personal characteristics for the purpose of maximizing the survival probability. These methods assume that a set of covariates is sufficient to deconfound the treatment-outcome relationship. Nevertheless, the assumption can be limiting in observational studies or randomized trials in which noncompliance occurs. Thus, we advance a novel approach for estimating the optimal treatment regime when certain confounders are not observable and a binary instrumental variable is available. Specifically, via a binary instrumental variable, we propose two semiparametric estimators for the optimal treatment regime, one of which possesses the desirable property of double robustness, by maximizing Kaplan-Meier-like estimators within a pre-defined class of regimes. Because the Kaplan-Meier-like estimators are jagged, we incorporate kernel smoothing methods to enhance their performance. Under appropriate regularity conditions, the asymptotic properties are rigorously established. Furthermore, the finite sample performance is assessed through simulation studies. We exemplify our method using data from the National Cancer Institute's (NCI) prostate, lung, colorectal, and ovarian cancer screening trial

    Current and Future Trends of Resource Misallocation in the Construction Industry: A Bibliometric Review with Grounded Theory

    Get PDF
    [EN] Resource misallocation (RM) refers to the existence of marginal output inequalities between different industries or companies in an economy. Prior studies of RM have mostly focused on effect analysis, construction industry structure upgrades, and organization management. However, these studies have been fragmented and unrelated. This paper analyzes the status quo, consequences, and emerging trends of RM research at the macroscopic level based on current problems and with the aim of exploring potential solutions. Drawing on grounded theory, a qualitative analysis using text-mining is used to analyze the characteristics of 124 RM-related papers. The results more comprehensively and systematically reveal that current RM research encompasses four major dimensions of sources and concepts, misallocation degree measurement and characterization, focused issues (field), and RM research deficiencies. Methods for measuring RM have also been developed from the simple proportional method to current mainstream methods (e.g., growth rate decomposition and variant substitution). We conclude that, in order for this discipline to thrive and effectively reduce RM, future research into RM should focus on core categories, especially the reform of market-oriented factors, transformation of government functions, construction industrial structure adjustment, and methods of income distribution. This systematic review provides a discipline oversight and uncovers necessary and potential research directionsThis research is supported by the National Social Science Fund projects (No. 20BJY010); National Social Science Fund Post-financing projects (No. 19FJYB017); Sichuan-Tibet Railway Major Fundamental Science Problems Special Fund (No. 71942006); List of Key Science and Technology Projects in China's Transportation Industry in 2018-International Science and Technology Cooperation Project (No. 2018-GH-006 and No. 2019-MS5-100); Emerging Engineering Education Research and Practice Project of Ministry of Education of China (No. E-GKRWJC20202914).Zhang, J.; Dong, F.; Ballesteros-PĂ©rez, P.; Li, H.; Skitmore, M. (2022). Current and Future Trends of Resource Misallocation in the Construction Industry: A Bibliometric Review with Grounded Theory. Buildings. 12(10):1-19. https://doi.org/10.3390/buildings12101731119121

    Developing a Revenue Sharing Method for an Operational Transfer-Operate-Transfer Project

    Get PDF
    The transfer-operate-transfer (TOT) project model is used widely as a commercial framework for public-private-partnerships to support provision of infrastructure and enable the delivery of services. However, operational delivery of such projects can encounter certain challenges, such as the need for improved revenue sharing between governmental and private partners. The purpose of this paper is to design a revenue sharing method (RSM) that satisfies the revenue-sharing forecast in the contract design stage and the realized revenue sharing in the contract execution period for an operational TOT project. This approach identifies the impact of external uncertainty and effort level as well as the input ratio on revenue sharing of participants, distributes and reasonably minimizes the project revenue uncertainty among the participants, and achieves an improved matching of the participants’ revenue sharing with their risk-sharing, resource input and effort level. The paper utilizes the fuzzy-payoffs Shapley value method for revenue distribution for an operational TOT project, where the fuzzy alliance and input ratio coefficient are adopted to gradually optimize the Shapley value and form the RSM of an operational TOT project. The RSM allows prediction of the revenue sharing of participations under uncertain conditions of project revenue and supports improved decision-making by participants
    • …
    corecore